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1		 Introduction	 

1.1		 Project	Goals	 

The Coastal Zone Management program, through NOAA grants, has funded several 
projects that have reviewed design considerations and monitored living shoreline systems for 
effectiveness at both shore protection and habitat enhancement. These studies presented data 
regarding the construction and performance of three living shoreline projects that were built 
between 1999 and 2003 in Maryland (Hardaway et al., 2007 and 2009) and were in part the basis 
for the “Living Shoreline Design Guidelines for Shore Protection in Virginia’s Estuarine 
Environments” and the contractor training classes (Hardaway et al., 2017). In addition, 
extensive research has been done on the design and performance of breakwater systems around 
Chesapeake Bay (Hardaway & Gunn, 1991; 2010; 2011). Breakwater and beach systems are 
appropriate for medium to high energy shorelines along Chesapeake Bay and its tributaries. 

Monitoring effectiveness of nature-based resilience projects such as those that use living 
shoreline management strategies is essential to have a better understanding of their performance 
over time.  Living shoreline strategies can efficiently control shoreline erosion while providing 
water quality benefits and maintaining natural habitat and coastal processes, and though these 
ecosystem-based management systems have been the preferred alternative for stabilizing tidal 
shorelines in the Commonwealth of Virginia since 2011, a recent analysis has shown that 
between 2011 and 2016 only 24% of the permits granted for shore protection were considered 
living shorelines (ASMFC, 2016). These types of systems may be relatively new to many 
landowners and some managers who may not be convinced about the long-term success of the 
systems for shore protection and their maintenance.  Research has been performed on the 
effectiveness of created beaches and marsh habitats, but long-term studies of their efficacy for 
shore protection in Chesapeake Bay from a design and construction perspective are relatively 
few. 

The present project seeks to build upon and expand monitoring efforts of sills and 
headland breakwater systems in Chesapeake Bay to determine effectiveness of shore protection 
and habitat creation and stability through time using a detailed site assessment and survey of five 
sites (Figure 1-1) including Aquia Landing, Bavon, Kingsmill, Virginia Institute of Marine 
Science (VIMS), and Yorktown. In addition, referencing the latest research results of migration 
and accretion of beaches and marshes in Chesapeake Bay, the project will seek to determine 
what elements make these successful over the short and longer terms. 

A second goal of the present project was to determine the coastal habitat response of 
created wetlands and beaches at living shorelines in the face of sea-level rise. Using a detailed 
elevation survey of each site and the U.S. Army Corps of Engineers climate change adaptation 
sea-level rise scenarios, the whole system will be reviewed to study response to these changes in 



	 	
 

 
 

 

 
 

	

 
 

 

 

 

P a g e  | 3

water level through time. 
Typically, shore protection 
structures are built in front of 
eroding banks that input sediment 
to Chesapeake Bay and provide 
limited subtidal habitat. Systems 
that are constructed in front of 
eroding upland banks have a 
”backstop” up which these 
created intertidal habitats may not 
be able to migrate as sea level 
rises. This affects their long-term 
performance. The collected data 
will be used to project impacts of 
sea level rise through time on the 
structures, the upland banks, and 
created marshes and beaches to 
determine adaptive management 
strategies for these sites.  These 
adaptive management strategies 
could be in the form of 
strategically adding rock and sand 
to the existing cross-section to 
address increased future water 
levels and to maintain the living 
shoreline benefits through time.  
Determining how resilient these 
systems will be in the face of climate change requires understanding how these systems 
functioned in the past.

Figure 1‐1.  Location of breakwater sites assessed for this project.

1.2 Coastal	Resiliency		 

Coastal resiliency is the ability to bounce back after hazardous events, such as hurricanes, 
coastal storms, and flooding, all of which are exacerbated by sea-level rise.  Management 
practices in place today dictate how effective these strategies will be in the future.  
Understanding where and how shorelines are vulnerable to loss from coastal hazards, and 
adapting planning and development practices to compensate for these vulnerabilities will 
ultimately result in better shoreline management practices.  Coastal salt marsh wetlands are 
particular vulnerable to even the smallest amount of sea level rise.  Coastal wetlands are critical 
habitat for commercial and recreational fish and invertebrate species.  Loss of these wetlands 
through sea level rise could pose a real threat to coastal economies and water quality if they are 
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lost. Planning for sea level rise today can preserve inundated lands and allow coastal wetlands to 
migrate inland and maintain their essential functions for the community. 

Coastal resiliency of shoreline protection measures is often couched in terms of habitat 
impacts, diversity and the change in habitat from before the measure was installed. Stone 
revetments are better than bulkheads, but living shorelines are better than revetments from a 
habitat perspective. However, measures to provide shoreline erosion control must be robust 
enough, designed for a certain level of protection, and now for a given scenario of sea level rise.   
The USACE has developed scenarios for this (Figure 1-2). In 2050, at the intermediate rate for 
SLR, sea level will be about 1.1 feet above present levels and at the high rate, sea level with 2.1 
feet above present levels.   

Because most of the sites 
selected for survey and 
assessment were constructed 
some time ago, they have been 
impacted in varying degrees by 
ongoing sea level rise. The 
amount of sea level rise since 
each sites installation from 
oldest to youngest are: 

1) Aquia Landing, installed 
in 1987, SLR = 0.33 ft. 
Reference: Washington 
DC 

2) Yorktown, first phase 
installed in 1995, SLR 
=0.33 ft, Reference: 
Yorktown CGS 

3) Kingsmill, installed in 
1996, SLR = 0.3 ft, Reference: Sewells Point 

4) VIMS, installed in 2010, SLR = 0.16 ft, Reference: Yorktown CGS 
5) Bavon, installed in 2016, SLR = 0.05 ft, Reference: Yorktown CGS 

Reference stations are NOAA tide gauge stations in Chesapeake Bay at Sewells Point, Yorktown 
Coast Guard Station, and Washington DC. 

Few researchers have looked at the “long” term maturity of headland breakwater and sill 
systems and what that means to both habitat function and shore protection. Numerous recent 
studies have looked at relatively new projects, less than 10 years old, including Burke et al. 
(2005), Bilkovic and Mitchell (2013), and Bosch et al. (2006).  Bilkovic and Mitchell (2017) 

Figure 1‐2. Sea‐level rise predictions from the U.S. Army Corps of 
Engineers (2014).
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stress the habitat component as essential along with shore protection.  Accordingly, living 
shoreline designs should maintain or enhance sedimentation and accretion which promotes 
increased ecosystem function longevity with sea-level rise. Also necessary is that the projects 
have a robust maintenance program to address issues like invasive species and shading which is 
often not the case. 

The SLR curves presented (Figure 1-2) impact implementation strategies that can range 
from a conservative anticipatory approach, which constructs a resilient project at the beginning 
of the project life cycle, to a reactive approach, which consists of doing nothing until the impacts 
are experienced. Between the two extremes is an adaptive management strategy, which 
incorporates new assessments and actions throughout the project life based on thresholds and 
triggers. 

Site recommendations for the selected project shorelines, all of which are breakwater 
systems with rock, sand, and plants, with or without bank grading, suggest that rather than 
adding rock and sand to the system initially to accommodate some level of SLR, a plan should 
provide for future adaptation. Therefore, the most cost effective adoption of this philosophy of 
coastal resiliency is to protect low banks where bank grading costs are less and more gradual 
bank grades, such as a 4:1 slope rather than the minimal 2:1 slope, are practical.  More gradual 
bank grades will allow the wetland component to migrate laterally landward more effectively.  
For ungraded and graded high banks, the projects are in more of a “coastal squeeze” situation.  
Here, addressing the vertical growth component is the only option unless the existing breakwater 
system is moved farther offshore to gain a lateral gradient.  This would be difficult to permit and 
costly. The question becomes, when is it best to add rock and sand to the breakwater system? 
Should it be done initially at present day cost or sometime in the future when needed? 

According to the USACE (2014), increased water levels will produce an increase in 
depth-limit wave height.  Because rubble-mound armor unit stability is proportional to the wave 
height cubed (H3), a relatively moderate increase in water depth produces a much higher load on 
armor units.  These statements pertain to much larger rock structures in more exposed wave 
energy settings. However, the basic premise is the same even with smaller wind wave climates.  

Recent research on salt marsh complexes along the Gulf and East Coast indicate that they 
may in fact be able to keep up with SLR under the right circumstances (Kirwan et al 2016).  
According to Kirwan et al. (2016), their meta-analysis of marsh elevation change indicate that 
marshes are generally building at rates similar to or exceeding historical sea level rise, and the 
process-base models predict survival under a wide range of future sea level scenarios.  They 
argue that marsh vulnerability tends to be overstated because assessment methods often fail to 
consider biophysical feedback processes known to accelerate soil building with sea level rise, 
and the potential for marshes to migrate landward. Whether the small marsh fringes created as 
part living shoreline projects can keep up vertically is uncertain but protecting the bay edge from
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eroding is essential to their long term stability. Landward migration will depend on upland bank 
height and grading potential. 

1.3 High	Water	Events

Two basic types of increased water level impact the shoreline: 1) short term (storm surge) 
and long term (relative sea level rise).  Hurricane Isabel was the most significant storm in terms 
of water level since 1933. Hurricane Isabel impacted Chesapeake Bay on September 18, 2003 
with record high storm surge and winds.  Virtually all Chesapeake Bay shorelines were 
impacted.  Those shorelines with open fetch exposures to the north, northeast, east, southeast, 
and south were especially effected due to the rotation of Isabel’s winds from north to south 
during her passage. Hundreds, if not thousands, of shore protection systems were damaged or 
destroyed. Many shorelines around the Bay which had no shore protection were moved 10 to 30 
feet landward due to storm surge and waves.  Shore reaches with properly designed and 
constructed headland breakwater systems incurred varying degrees of damage from none to 
several feet of cut at the adjacent base of the upland banks  

The Chesapeake Bay Breakwater Database Project has 42 sites that have been monitored 
at some level by the Shoreline Studies Program over the years (Breakwater Database). Although 
more Bay breakwater systems exist, the sites in the database were chosen because they were 
designed with regard to their site setting, impinging wave climate, and desired level of 
protection, i.e. the 25 year or 50-year storm event.  Many projects are older than 10 years, and all 
were impacted by Hurricane Isabel.  After Hurricane Isabel, Hardaway et al. (2006), Aquia 
Landing, Kingsmill, Van Dyke, and Yorktown were selected for detailed analysis of Isabel’s 
impacts since the four sites were surveyed immediately prior to the storm.  This provided an 
opportunity to physically determine shore changes that may result due to a major storm event 
that equaled the 1933 Hurricane in storm surge level.  The hurricane of 1933 is the unofficial 
100-year event that the Federal Emergency Management Agency (FEMA) has, until this point, 
used for a reference datum in Chesapeake Bay. 

These four sites were mapped using a real-time kinematic global positioning system 
before and after the storm. The data were analyzed for changes in sand levels on the beach and 
nearshore as well as for any upland or backshore impacts from the storm.  To better understand 
these changes, low-level vertical aerial photography, taken before and after the storm, were 
georectified and the shorelines digitized.  At all sites, the breakwaters performed well allowing 
little overall change to beach systems.  Since these sites were designed for 25 and 50 year 
storms, all were “overtopped” with the combination of surge and wave runup.  The beach/upland 
interface at the two high bank sites (Kingsmill and Van Dyke) incurred varying degrees of bank 
scarping, but no bank failure while the two low backshore sites (Aquia Landing and Yorktown) 
saw sand washed over into adjacent roadways.  Beach planforms adjusted bayward under storm 
conditions but returned to pre-storm position.
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Hurricane Isabel directly impacted three of the five breakwater sites assessed for this 
project, and the storm’s impacts were a primary cause that spurred funding for shore protection 
systems around the Bay, particularly at VIMS and later at Bavon.  The Bavon breakwaters also 
was tied to the endangered tiger beetle beach habitat restoration.  Although Isabel was arguably 
the worst storm to hit southeast Virginia since 1933, numerous lesser but still significant storm 
events have occurred since. Some notables include: 

Sept. 1, 2006: Hurricane Ernesto; +6.5 MLLW storm surge with mostly easterly winds 
sustained at 40 knots, gusting to 60 knots. 

November 11-14, 2009: NorIda; Northeast storm setting in for several days with peak 
surge of +7 ft MLLW on the 12th and 6 consecutive +5ft high water events.  

August 27, 2011: Hurricane Irene; Storm surge +6.2 MLLW with NE to NW winds 40 
knots gusting to 55 knots. 

2		 Headland	Breakwaters	 

The type of living shoreline rock structures/system installed along the higher energy 
shorelines of Chesapeake Bay typically are breakwater systems which are beach and dune 
centric. Stone breakwaters are "free standing" structures designed to reduce wave action by 
attenuation, refraction, and diffraction before it reaches the upland region.  Headland 
breakwaters maintain stable pocket beaches between the structures and a sand tombolo that 
attaches the structure to the shore.  Attached or headland breakwaters require beach fill in order 
to provide long-term shoreline erosion control (Figure 2-1) because they are constructed in areas 
that are subject to more energetic conditions.  System design considerations are upland runoff, 
bank geology, shoreline morphology, sedimentation, and aesthetics. Because of the impact of the 
structures on longshore drift, the potential impacts to adjacent shorelines must also be considered 
and minimized. 

Natural sandy beaches between rocky headlands have been called a variety of names in 
the literature, related to the curved shape of the bay found at many coasts around the world. 
Because of their geometry, they have been called spiral beaches, crenulate-shaped bays, log-
spiral and parabolic-shaped shorelines, headland bay beaches and pocket beaches.  Extensive 
research on crenulate bays resulted in relating the equilibrium beach planform to maximum bay 
indentation and incident wave angle.  The bay can be divided into the tangential reach and the 
updrift structure-shadow reach also known as the logarithmic spiral (Figure 2-2). The 
logarithmic spiral reach is affected most by wave diffraction around the updrift 
headland/structure. The tangential reach, which is slightly convex seaward of straight, is affected 
mostly by wave refraction and generally aligns with the dominant or net direction of wave 
approach. Hsu et al. (1989a & b) and Silvester and Hsu (1993) determined that defining the 
headland bay curvature through the log spiral method was not precise and should be replaced 
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with empirical relationships. 
These relationships revolve 
around a static equilibrium bay. 

Stone for breakwater 
units comes from rock quarries 
located along the Fall Line of 
Virginia and Maryland. Rock 
types can be granite, 
metamorphosed limestone, or 
dolomite.  A tombolo (sand 
behind the breakwater) is an 
essential element in headland 
breakwater systems although the 
degree of sand attachment 
between breakwater unit and the 
shore can vary (Figure 2-1). In 
Chesapeake Bay, the tombolo 
often must be created with beach 
nourishment since the natural 
supply of sand generally is 
limited.  Coarse sand is 
appropriate for constructed 
beaches in Chesapeake Bay. The 
mean grain size (D50) for 
naturally occurring beaches in 
Chesapeake Bay is 0.5 mm as 
sampled at mean high water 
(MHW) at 225 locations 
(Hardaway et al. 2001). Surveys of 
intertidal beach slope for the same 
sites yielded a 12% grade or about 
10:1. 

The dimensions of a 
breakwater system are dependent 
on the desired degree of protection 
and potential impacts on littoral 
processes. Hardaway and Gunn 
(2000) found that when breakwater 
length approaches double the 

Figure 2‐1.  Top: First headland breakwater system built in 1985 at 
Drummond Field on James River.  Bottom: Typical tombolo with 
breakwater and bay beach cross sections (after Hardaway and 
Byrne, 1999).

Figure 2‐2.  Parameters of the Static Equilibrium Bay (after Hsu 
et al., 1989) that are used to determine the shape of the 
embayments between headland breakwaters.
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design wave length, the structure can better hold a tombolo, particularly when the breakwater 
acts as a headland in multiple breakwater unit systems.  The relationship between four specific 
headland breakwater system parameters were investigated by Hardaway et al. (1991) and 
Hardaway and Gunn (1991) for 35 breakwater embayments around Chesapeake Bay.  Referring 
to Figure 2-3, these parameters include breakwater crest length, (LB), gap between breakwaters 
(GB), backshore beach width (Bm) and embayment indentation (Mb).  The mid-bay backshore 
beach width and backshore elevation are important design parameters because they determine the 
size of the minimum protective beach zone in the headland breakwater system.  This beach 
dimension often drives the bayward encroachment that is required for a particular shore 
protection design. Linear regression analyses were best for the relationship of Mb vs. GB with a 
correlation coefficient of 0.892. The ratio of these two parameters is about 1:1.65 and can be 
used as a general guide in siting the breakwater system for preliminary analysis.  Then, the 
detailed bay shape can be determined.  Stable relationships for Mb and GB are not valid for 
transitional bay/breakwater segments that interface the main headland breakwater system with 
adjacent shores.  Numerous variations can occur depending on design goals and impinging wave 
climate.  Hardaway and Gunn (2000) found that for 14 breakwater sites around the Bay, the Mb 
vs. Gb ratio varies in range and average for bimodal and unidirectional wind/wave settings.  For 
unidirectional sites, the range of Mb:Gb can be 1:1.4 to 1:2.5 with an average of 1:1.8.  Aquia 
Landing and Yorktown have average Mb:Gb ratios of 1:2.5 and 1:1.8, respectively.  For bimodal 
sites, Mb:Gb ratios vary from 1:1.0 to 1:1.7 with an average of 1:1.6.  Kingsmill has Mb:Gb 
ratios of 1:1.2. 

Figure 2‐3.  Breakwater design parameters (after Hardaway and Byrne, 1999).
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3		 Methods	 

In this second year, the research project examined medium to high energy shorelines 
(fetch 1-5 miles and > 5 miles respectively) along which breakwater systems have been built to 
create beach and dune habitat.  By selecting sites that were recently installed as well as those that 
have been in place longer, both the short and longer-term shore protection effectiveness and 
changes in habitats were determined. A detailed site-specific assessment and survey was done to 
determine the condition of the upland bank and backshore barriers which will affect storm run-up 
and migration of the dune grasses and the width and elevations of the vegetation which will 
provide wave attenuation. 

The site assessment includes type and condition of habitats including the marsh, dune, 
upland bank, riparian buffer, and in the nearshore.  Where applicable, changes in submerged 
aquatic vegetation (SAV) will be determined from existing data available from the VIMS, SAV 
research group. SAV is important habitat for many shallow water species.   

Using Real-Time Kinematic GPS and Robotic Total Station technology, five sites were 
surveyed for elevation and areal extent of habitat where possible.  These sites were chosen for 
several reasons including site conditions, duration of the site, and existing data available. Several 
of these sites have as-built and some interim surveys that can be compared to the results of this 
project’s surveys to determine existing conditions of the site and delineate habitats and how they 
have evolved. The sites include: VIMS (Figure 3-1); Yorktown Beach (Figure 3-2); Aquia 
Landing Beach (Figure 3-3); Kingsmill (Figure 3-4); and Bavon Beach (Figure 3-5).   

Low-level vertical and oblique aerial images were acquired at all of these sites except 
Kingsmill to determine morphological changes over time.  By selecting private and public 
properties, both high and low bank systems, the impact of sea-level rise was assessed using 
climate change adaptation sea-level rise scenarios. The site surveys were analyzed in GIS, and 
two sea level rise scenarios were assessed for a one and two-foot rise by 2050. The elevations of 
existing habitats and the shore planforms were assessed to determine the potential impacts as sea 
level rises and depicted on profile cross-sections. 
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BW1 

BW2
BW3 BW4

BW5 

Figure 3‐1.  Data points collected at VIMS to determine elevation changes at the site since installation.  
Also shown are the measured mean high water and mean low water lines and the cross‐sectional profiles 
exported for the project.

BW4BW3 
BW5 

BW6 

Figure 3‐2.  Data points collected at Yorktown to determine elevation changes at the site since 
installation.  Also shown are the measured mean high water and mean low water lines and the cross‐
sectional profiles exported for the project.
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BW4BW3BW2BW1 

Figure 3‐3.  Data points collected to determine elevation changes at the site since installation.  Also 
shown are the measured mean high water and mean low water lines and the cross‐sectional profiles 
exported for the project.

BW4 BW5BW3 

Figure 3‐4.  Data points collected to determine elevation changes at the site since installation.  Also 
shown are the measured mean high water lines and the cross‐sectional profiles exported for the project.
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4		 Site	Background	and	Data	

4.1	 Virginia	Institute	of	Marine	Science,	Gloucester	County	

The Virginia Institute of Marine Science is located at Gloucester Point, VA (Figure 4-1-
1).  VIMS was established in 1940 as the Virginia Fisheries Laboratory.  The shoreline was an 
eroding high upland bank that was hardened with a concrete seawall in 1950 (Figure 4-1-2). As 
the Institute grew, the seawall was expanded alongshore (Figure 4-1-3).  A narrow beach 
occurred along the shoreline but as the updrift shore was hardened, cutting off primary source of 
littoral sands, the beach narrowed (Figure 4-1-4). The April 1978 northeast storm event damaged 
the seawall and took away most what was left of the beach (Figure 4-1-5).  A revetment was 

Figure 4‐1‐1. Left: Location of VIMS East breakwaters, and Right: Aerial image of breakwaters taken on 
23 Sep 2019.

 

Figure 3‐5.  Data points collected at Bavon to determine elevation changes at the site since installation.  
Also shown are the measured mean high water and mean low water lines and the cross‐sectional profiles 
exported for the project.

BW1 
BW2 BW3
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With time, the system has 
become more robust with the low 
marsh being replanted and 
expanding across the back and 
flanks of the breakwater tombolos 
(Figure 4-1-9).   Though grasses 
were planted after breakwater 
installation, they had not taken hold 
behind the structures by 2013 
(Figure 4-1-10).  The breakwater 5 
tombolo was relatively narrow.  
However, in 2019, all five structures are heavily vegetated, and sand is accreting along the 

installed along the seawall in 
1984 along with about 
10,000 cubic yards (cy) of 
sand for a beach (Figure 4-1-
6).  By 2003, the nourished 
beach was significantly 
reduced by the time 
Hurricane Isabel hit, 
September 18, 2003 (Figure 
4-1-7).

The VIMS shore 
protection system was 
conceptualized in 2002 and 
became a critical project 
after Isabel which resulted 
in significant impact to both 
VIMS East Coast and 
VIMS West Coast.  After 
several iterations a 
conceptual plan was 
developed (Figure 4-1-8). 
The project was installed in 
2010 and has since 
experienced several severe 
storms including Hurricane 
Irene on August 27, 2011.    

 Figure 4‐1‐2. VIMS’ first building and seawall at Gloucester Point in
1951.

Figure 4‐1‐3.  By 1964, additional buildings had been constructed and 
the seawall was extended.

Figure 4‐1‐4.  Very little sand existed along the VIMS shoreline 
in 1970.
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updrift breakwater because sand movement along this section of shoreline is to the south.  In 
addition, SAV has established itself in the embayments.  It should be noted that the 2013 and 
2019 MHW shorelines in the embayment between breakwater 4 and 5 are slightly landward of 
the 2003 post-Hurricane Isabel high water shoreline.  Positioning of the structures and sand fill 
had to accommodate the established biological experiments located in the nearshore.  As such, 
the gap between the structures was placed such that the minimal amount of fill would be placed 
near these experiments.  This has not impacted the effectiveness of the system because the 
embayment is still wide enough that vegetation grows in the backshore to help hold the sand and 
should an extreme event occur, the embayment is backed by the seawall. The highest areas are 
along the backshore next to the seawall (Figure 4-1-11).  Though the tombolo right adjacent to 
the pier is vegetated, it still does not have as much sand behind the structure as the other 
breakwaters.

Figure 4‐1‐5.  Top: During the April 1978 northeast 
storm, waves directly impacted the seawall 
because VIMS had no sandy beach in front.  
Bottom: The storm damaged the seawall.

 Figure 4‐1‐6.  A revetment was installed and covered
with beach fill along the shoreline to provide 
protection to the seawall.
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Figure 4‐1‐7.  In 2003, Hurricane Isabel greatly damaged many 
areas along the VIMS shoreline.  Wave action overtopped the 
seawall and revetment cutting into the bank.

Figure 4‐1‐8. Shore protection plan designed for VIMS after Hurricane Isabel significantly impacted its 
shoreline.
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Figure 4‐1‐9.  VIMS shoreline in 2017. 

Figure 4‐1‐10.  Shoreline change between 2003 and 2019 at the VIMS breakwaters.  The 2003 pre‐
installation date is shown for reference.  The 2003 and 2013 shorelines are approximately mean high 
water based on the digitizer’s best guess of the features shown. The 2019 shoreline is from the survey 
data. 
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	4.2 Yorktown,	York	County	

The Yorktown Public Beach is located on the south side of the York River in Yorktown, 
Virginia (Figure 4-2-1).  It is approximately 1,200 feet in length.  Historically, the beach was a 
product of erosion of nearby sandy upland banks and the littoral transport system.  Over the 
years, the beaches along the waterfront began to narrow as the natural sediment supply was 
depleted by hardening of the updrift shorelines.  Beaches were easily overwashed in storms, and 
they continued to erode.  The nearshore closest to the Colman Memorial Bridge is very deep as 
the river narrows, and the channel under the bridge is naturally 90 ft deep.  Downriver, the 

Figure 4‐2‐1. Left: Location of Yorktown Beach breakwaters, and Right: Aerial image of breakwaters 
taken on 23 Sep 2019.

Figure 4‐1‐11. Digital elevation model of the collected survey points at VIMS.
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nearshore widens.  Although the winter northwesters are strong, the long fetch to the east into the 
Bay and the shoreline morphology indicate an unidirectional wind/wave setting.

The history of the site, design guidelines, and performance of the Yorktown site over 
time has been documented in Milligan et al. (1996, 2005, & 2006), but a general summary is 
presented here.  In 1978, York County installed a riprap revetment along its picnic area shore to 
the east end of Yorktown.  This area had been filled in Colonial days to expand the warehousing 
facilities at the Port of Yorktown.  After a damaging storm in November 1985, a small 
breakwater with beach nourishment was installed in order to maintain a storm water outfall.  
Subsequent renourishment occurred three years later, but the northeast storm in March 1993 
severely eroded the shoreline (Figure 4-2-2).

In September 
1994, York County 
installed Phase I of an 
offshore breakwater 
system which 
consisted of two shore-
attached breakwaters.  
These breakwaters, 
140 and 120 feet in 
length, were coupled 
with 7,500 cubic yards 
of beach fill and 
plantings of Spartina 
alterniflora and 
Spartina patens in the 
lee of the structure.  The pre-existing breakwater was modified to interface the system on the 
downstream end and the 120-foot breakwater has a falling crest elevation to encourage wave 
refraction, and a winged breakwater was designed to achieve a reasonable interface with the 
adjacent shore and reduce potential wave force impacts during northeasters.  In May 1996, 
approximately 600 cubic yards of sand was dredged from under the Coleman Bridge as part of 
the bridge widening project.  This sand was subsequently used as beach fill on Yorktown Beach. 

In the fall/winter of 1998-1999, Phase II of the Shore Erosion Control Plan was 
implemented along the shoreline.  Two winged, headland breakwaters, 120 and 130 ft in length, 
were constructed downriver from the existing breakwaters.  The small breakwater built in 1986 
to stabilize the storm water outfall was removed in order to establish a better breakwater gap-to-
bay indentation ratio for the new system.  The storm water outfall pipe was relocated through 
one of the new breakwaters.  In addition, approximately 10,000 cubic yards of sand was placed 
on the beach, and beach grasses were planted behind the structures. 

 Figure 4‐2‐2. Yorktown Beach shoreline on 4 March 1993 during a northeast
storm.
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Phase III of breakwater construction began in June 2000 (Figure 4-2-3).  The completed 
project included three new breakwaters, beach fill along the Yorktown waterfront, and a 
revetment.  Since then, the wharf where the old post office sat was removed.  Two smaller 
breakwaters, 80 and 85 ft in length were positioned at the far west of the reach.  A larger winged, 
headland breakwater, 150 ft in crest length, was installed as well, and beach grasses were planted 
behind it.  The existing revetment on the upriver end of the site was repaired and a new section 
was added toward the west.  Along with the breakwater construction, a new walkway adjacent to 
the Water Street was added.  Since then, an additional two breakwaters have been built on the 
upriver end of the site, and in 2005, three more were constructed upriver and one more 
downriver.  

   The impacts of 
Hurricane Isabel were 
documented on Yorktown 
(Hardaway et al., 2006).  The 
beach was severely damaged 
because the low backshore 
and adjacent low bank 
allowed the storm surge to 
inundate the structures and the 
shoreline.  However, the 
overall integrity of the system 
was maintained although 
some sand loss and local 
scour occurred.  The system 
performed above expectations 
because the site was designed for a 50-year event.  Since Hurricane Isabel, the Yorktown 
breakwater system has been impacted by Hurricane Irene, NorIda, Hurricane Ernesto and 
numerous lesser storm events and has remained very much intact.  York County provides truck 
in sand annually and after storms, if needed, but these efforts are in the range of 500 cubic yards 
or so.   

Today, the beach is wide and heavily used for recreation (Figure 4-2-4).  The MHW 
shoreline is farther riverward than it was in 2004 and 2013 (Figure 4-2-5).  This wide beach 
provides protection for infrastructure in the backshore because during high water events, the 
waves will break on the breakwaters or the beach before they cause damage.  Highest elevations 
are located along the backshore and in the middle of the tombolos where the vegetation occurs 
(Figure 4-2-6). 

Figure 4‐2‐3. Yorktown Beach shoreline on 13 Feb 2018.



P a g e 	| 21	 	
 

 

  	

 Figure 4‐2‐4.  A wide recreational beach exists at Yorktown Beach shoreline on 31 Jul
2019.  Though the backshore is low, the beach provides protection to upland structures.

Figure 4‐2‐5.  Shoreline change between 2004 and 2019 at the Yorktown breakwaters.  The 2004 and 
2013 shorelines are approximately mean high water based on the digitizer’s best guess of the features 
shown on the aerial photo.  The 2019 shoreline is from the survey data.
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4.3		 Aquia	Landing,	Stafford	County	

Aquia Landing is a county-owned public beach on the Potomac River in Stafford County, 
Virginia (Figure 4-3-1).  Prior to the project installation, the county beach was severely 
deteriorated with failing groins and washovers across a very low upland shore zone (4-3-2).  
Long fetch exposures to the southeast of over 7 nautical miles (nm) and northeast of over 4 nm 
made the site vulnerable to storm damage.  Dominant northwest wind-driven waves and 
northeasters create a generally unidirectional wave exposure coming down the Potomac River.  
A breakwater and beach fill project was installed in 1987; it covered 1,200 ft of shoreline and 
consisted of 700 ft of stone revetment, four 110 ft headland breakwaters with 20,000 cy of beach 
fill bounded on each end by spurs.  The design utilized the shore morphology of the existing 
groin field to determine tangential beach orientation.  The pocket beach configurations have been 
stable since installation. The overall purpose of the project was to provide shore protection, 
create a recreational beach, and reduce beach hazards from deteriorating groins.

The design and performance of the site was analyzed by Linden et al. (1991).  They 
found that during the three years after the installation of the project, the overall volume of beach 
material within the monitoring area had not changed.  The wide, flat, shallow nearshore has 
allowed submerged aquatic vegetation (SAV) to expand at the site in the last 10 years (VIMS 
SAV website).  This has likely helped maintain a stable nearshore during storm events. 

Figure 4‐2‐6. Digital elevation model of the collected survey points at Yorktown.
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Though the storm surge topped the system during Hurricane Isabel and sand washed over 
the jersey wall onto the road (Figure 4-3-3), no extreme changes in topography were measured 
indicating that overall, the breakwater system remained stable during the storm (Hardaway et al., 
2006).  The beach along Aquia Landing has been relatively unchanged since Hurricane Isabel.  
The shore planform has remained relatively stable since Isabel except for the thinning of tombolo 
attachments which have not impacted the beach and backshore (Figure 4-3-4).  A wide 
recreational beach occurs at the site. 
The tombolos are heavily vegetated 
and a great deal of SAV occurs in the 
nearshore. Some variation has occurred 
in the position of MHW over time 
(Figure 4-3-5), but it has been 
relatively minor.  The position of the 
embayments post-Hurricane Isabel 
shoreline on October 30, 2003, were 
slightly shifted due to wind and wave 
action during the storm.  The 2013 and 
2019 high water shorelines are similar 
although the 2019 tends to be riverward 
of the 2013.  The tombolo at 
breakwater 4 has lost its attachment 
over time as the structure itself sank.  
Though heavily vegetated, the 
breakwater 4 tombolo is lower than the 
others (4-3-6). 

Figure 4‐3‐1. Left: Location of Yorktown Beach breakwaters, and Right: Aerial image of breakwaters 
taken on 23 Sep 2019.

Figure 4‐3‐2. Aquia Landing shoreline on 11 March 1982 
prior to the breakwater installation. Timber groins were 
becoming detached from the shoreline and were no longer 
effective shore protection.
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Figure 4‐3‐3. Aquia Landing shoreline on 30 September 2003 post Hurricane 
Isabel.  Though sand washed over the jersey wall, overall the system is intact.

Figure 4‐3‐4. A wide recreational beach exists at Aquia Landing shoreline on 16 Jul 2019.
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Figure 4‐3‐5.  Shoreline change between 2003 and 2019 at the Yorktown breakwaters.  The 2003 and 
2013 shorelines are approximately mean high water based on the digitizer’s best guess of the features 
shown on the aerial photo.  The 2019 shoreline is from the survey data. 

Figure 4‐3‐6. Digital elevation model of the collected survey points at Aquia Landing. 

BW1  BW2  BW3 BW4 



P a g e 	| 26	 	
 

 

 

 

4.4		 Kingsmill,	James	City	County	

Kingsmill is located on the north shore of the James River in James City County, Virginia 
(Figure 4-4-1).  It is a privately owned site that had chronic bank erosion and has a long fetch 
exposure to the south of over 12 miles and the southwest of over 5 miles (Figure 4-4-2).  Wind 
frequencies from these directions are about the same, and the site occurs in what is considered a 
bimodal wind/wave setting. The developer of the upscale residential community wanted shore 
erosion control with environmental edge so a 2,800 ft breakwater system was installed in 1996.  
It consisted of six headland breakwaters ranging in size from 115 ft to 210 ft, a 110 ft low 
breakwater and a 170 ft revetment for boundary interfacing structures, beach fill, and wetlands 
plantings, all of which were designed for a 50-yr storm event.  The site's seventy-foot-high banks 
had little sand and posed potential upland drainage problems.  The design routed upland drainage 
to an adjacent marsh, and low swales in the bank were used to allow storm water to diffuse 
through a vegetated beach fill.  Beach fill was obtained from an upland borrow pit.  The overall 
purpose of the project was to provide shore protection and habitat enhancement. 

Though Hurricane Isabel was a significant event for this site and measurable bank 
erosion occurred, overall erosion of the upland bank was minimized by the heavily vegetated 
backshore (Hardaway et al., 2006).  The beach swiftly returned to its pre-storm conditions.   

The shoreline is similar today with heavily vegetated tombolos and backshore and stable 
embayments (Figure 4-4-3).  Post Hurricane Isabel, the tombolo attachment behind the 
breakwaters was lost (Figure 4-4-4).  However, over time, sand accumulated behind the 
structures, particularly breakwaters 3 and 4, and became vegetated.  Breakwaters 5 and 6 are still 
subaerially attached

Figure 4‐4‐1. Left: Location of Kingsmill breakwaters, and Right: Google Earth image of breakwaters 
taken in May 2018.
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 Figure 4‐4‐2. Kingsmill shoreline June 1996 prior to
breakwater installation.

Figure 4‐4‐3. Stable embayment along the Kingsmill shoreline in 2019.
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Figure 4‐4‐4.  Shoreline change between 2003 and 2017 at the Yorktown breakwaters.  The shorelines 
are approximately mean high water based on the digitizer’s best guess of the features shown on the 
aerial photo. 

Figure 4‐4‐5. Digital elevation model of the collected survey points at Kingsmill. 
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4.5		 Bavon	Beach,	Mathews	County	

Bavon Beach is located along the Chesapeake Bay in Mathews County, VA (Figure 4-5-
1).  Though the breakwater project was not installed until 2016, this site was monitored for many 
years as Chesapeake Bay Dune Site MA3 (Milligan et al., 2005; O’Brien et al., 2009; Milligan et 
al., 2013).  The shoreline is an open Bay coast that has a low upland bank and residential 
properties sit immediately adjacent to the coast.  Its morphology is of a Bay barrier system with 
dunes, beaches, and nearshore bar system (Figure 4-5-2).  The shoreline position and stability is 
linked to the nearshore bar system that migrates along the shoreline depending on wind and wave 
events.  South of the breakwaters is New Point Comfort which has had dramatic shifts in 
position.  Once attached to the mainland, the lighthouse at New Point Comfort, constructed in 
1805, has since been stranded on its own island in the Bay (Figure 4-5-1).     

The Chesapeake Shores/Bavon Beach shore reach was significantly impacted by storms 
since monitoring began including those listed in Section 1.3 as well as Hurricane Sandy in 
October 2012 (Figure 4-5-3).  The beach and dune system along the north half of the reach 
remained fairly well intact between 2001 and 2013 (Figure 4-5-3, top).  The southern reach was 
particularly impacted as eroded beach sands were driven south with very little returning via 
northerly alongshore transport.  As a result, several revetments were constructed along the 
subreach to protect houses exposed on the shoreline (Figure 4-5-4).  Finally, in 2016, the 
breakwater system was constructed and consisted of 3 breakwaters with significant sand 
nourishment.  Though the system has not weathered significant storms, overall, it has maintained 
its system integrity by maintaining tombolo attachment (Figure 4-5-5). 

The southern section of the Bavon reach has been eroding rapidly.  Between 2003 and 
2013, the shoreline significantly retreated (Figure 4-5-6).  Though high water advanced along 
most of this shoreline between 2013 and 2019 due to the construction of the breakwaters, its 

Figure 4‐5‐1. Left: Location of Yorktown Beach breakwaters, and Right: Aerial image of breakwaters 
taken on 23 Sep 2019.
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position in the embayment between breakwater 2 and 3 is slightly landward of the 2013 
shoreline.  This is due to the erosion that occurred before 2016 when the breakwaters and fill 
were placed as well as to the placement of the structures.  Their placement determines the bay 
shape based on the static equilibrium bay model.  Sand may shift from side to side, but now the 
embayment is in dynamic equilibrium and should not retreat farther except possibly under a large 
storm event.  Breakwaters 2 and 3 have the highest tombolo elevations (Figure 4-5-7) and 
vegetation is growing there.  Breakwater 1 is still attached, but its attachment is lower and 
narrower.  

 

Figure 4‐5‐2. A 2011 aerial photo of MA3 depicting 
morphologic features (from Milligan et al., 2013).  
The breakwaters shown are on the northern end of 
the system and are not the ones studied for this 
project.  They occur at the southern end near where
the exposed peat is shown in front of the houses.

Figure 4‐5‐3. Depiction of the net change between 
2001 and 2013 along the northern end (top) and 
southern end (bottom) of Ma3 (from Milligan et al., 
2013).  The southern end is where the breakwaters 
were constructed.
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Figure 4‐5‐4. Top: Northern section of the Bavon reach 
during a high water event on 5 October 2015.  The wide 
dunes protect the houses.  Bottom: a revetment was 
constructed because the dunes had eroded along the 
southern section of the reach but no beach

Figure 4‐5‐5. The beach is wide and the tombolo attached and vegetated along Bavon’s 
shoreline in 2019. 
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5	 Adaptive	Management	

The US Army Corps of Engineers has developed an adaptive management philosophy 
regarding future estimates of sea level rise (SLR) (USACE, 2014).  Implementation strategies 
range from a conservative anticipatory approach, which constructs a resilient project at the 

Figure 4‐5‐6.  Shoreline change between 2003 and 2019 at the Yorktown breakwaters.  The 2003 and 
2013 shorelines are approximately mean high water based on the digitizer’s best guess of the features 
shown on the aerial photo.  The 2019 shoreline is from the survey data. 
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Figure 4‐5‐7. Digital elevation model of the collected survey points at Bavon. 
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beginning of the project life cycle, to a reactive approach, which consists of doing nothing until 
the impacts are experienced.  Between the two extremes is an adaptive management strategy, 
which incorporates new assessments and actions throughout the project life based on thresholds 
and triggers.  Each project site will require its own plan for the future.  

The intermediate position of sea level as described by the USACE of 1 or 2 feet by 2050 
was modeled at the sites.  VIMS, Yorktown and Aquia Landing have a backstop behind the 
system, whether it is a seawall, side walk with a granite curb/road and a raised backshore with 
jersey wall, respectively.  At these sites, no landward migration of the beach is possible, and the 
system could eventually be squeezed out.  The Kingsmill system transitions to a heavily 
vegetated base of bank and 2:1 bank slope up a 70-foot bank.  The backshore has some room for 
landward migration of the system, but it is limited.  Only Bavon Beach has a low, sandy 
backshore and dune along most of the shoreline for potential landward migration of the system.  
However, the land use is residential and migration of the beach will render the properties 
uninhabitable because of septic issues. 

At sites that may experience the coastal squeeze scenario, the breakwaters may require an 
increase in elevation with additional rock and sand.  Because sea level will be one to two feet 
higher, the beach barriers along Aquia Landing, Yorktown, and possibly VIMS will have to be 
raised as well.  The VIMS seawall may be high enough to address the added volume of rock and 
sand that can be added to adapt to a rise in sea level (Figure 5-1).   In addition, keeping the trees 
thinned to allow the beach system to be stabilized by marsh grasses is necessary to maintain the 
system.  As noted in the earlier section, the bay at Profile 8 has moved landward slightly since 
pre-installation of the structures.  This was due to placement of the structures and sand to 
minimize impacts to nearshore biologic experiments.  However, the bay has reached a dynamic 
equilibrium and should maintain its shape.    

At Yorktown, in addition to raising the backshore barrier, to address the 1 and 2 foot SLR 
by 2050, an increase in breakwater height is recommended (Figure 5-2).  The new armor should 
be at least 2-3 feet higher to accommodate the required rock size which is 1 to 2-ton armor.  
Perhaps a more reasonable approach to raising breakwaters is to add rock blocks/rectangles 
along the crest.  As an example, these would be on the order of 3x3x8 ft concrete structures that 
can weigh about 6 tons. Dimensions placement could vary.  These would simply be placed along 
the top of each unit, and, although expensive to fabricate, it might be cheaper than adding and 
constructing additional armor layers.  More sand will be required for the system as well. The 
shore planform can only adjust vertically with SLR unless the system is moved offshore.  
Moving the breakwaters offshore and adding much more sand might be cost prohibitive as the 
breakwater rock volume would increase and additional rock would be required.  The high value 
of infrastructure behind Yorktown Beach as well as the economic value of beach usage make 
maintaining the beach important.



P a g e 	| 34	 	
 

 

 

 

 

 

A similar approach could be used at Aquia Landing (Figure 5-3).  It is important to note 
that as the height of each structure is raised, not only does the the front slope extend farther 
bayward but also each end extends making the structure longer. For this example, with a 2-foot 
increase, the Aquia Landing breakwaters will each increase by 9 to 10 feet on each end resulting 
in an 18 to 20 feet increase in breakwater length. The will be consequent decrease in Bay gap by 
the same which will also help further stabilize the newly elevated beach planform.  The access 
road to Aquia Landing also will have to be raised to provide continued access. 

The Kingsmill breakwater system has remained relatively stable with extensive 
vegetative growth across the backshore with numerous trees growing including cedar, pine, 
sweet gum, live oak and even cypress (Figure 5-4).  These have the impact of shading out the 
low grasses that are providing an erosion resistant turf. The trees will eventually die due to rising 
sea level, except possibly the cypress and should at least be selectively thinned. The south facing 
shoreline will provide the necessary sunlight for a robust vegetative buffer.  To address the 2050 
sea level rise scenarios, an increase in rock elevation is recommended.  Additional sand should 
also be brought in to increase beach and backshore width to help accommodate an evolving dune 
system.  

At this stage, the Bavon Beach breakwater system is still evolving (Figure 5-5).  Access 
to Bavon will be an issue in the future as sea level rises, because the road to the subdivision now 
frequently floods during spring tides.  Unless the access issue is resolved any adaptive 
management options may not be available.  Though not modeled, rock and sand could be added 
to adapt to SLR.  As noted earlier, the bay profile shows erosion between 2011 and 2019 even 
though sand was place along the shoreline in 2016.  The shoreline eroded significantly between 
2011 and 2016.  As shown in Figure 4-5-3, the southern section of the Bavon reach has had a 
great deal of beach and dune loss since monitoring of the site began in 2001.  With the placement 
of the structures, the sand has evolved to a dynamic equilibrium and should maintain its shape.   

With ongoing sea level rise all the shoreline projects will eventually be flooded and 
possibly abandoned.  In which case, a breakwater, beach and dune system may become an 
offshore rock reef with submerged shoals along the shoreline. These may still offer some shore 
protection but will also become rock substrate for oysters and associated fish communities. The 
landward shoal areas should provide a benthos habitat possibly SAV pioneers from warmer 
water species.  

Future funding will have its challenges. Bavon’s shoreline is privately-owned by 
individual residents.  Kingsmill is privately-owned by a large corporate entity. VIMS shoreline is 
owned by the Commonwealth of Virginia while Aquia Landing and Yorktown are locally-owned 
public beaches. 
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Figure 5‐1.  Selected cross‐sectional profiles of survey data taken at VIMS in 2010, pre‐project installation 
and 2019.  The +2 ft MLW depicts the SLR scenario.  Rock and sand can be added to the system to adapt 
to rising sea level to ensure resiliency of the overall system. The 2010  survey data provided by VHB, Inc.
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Figure 5‐2.  Selected cross‐sectional profiles of survey data taken at Yorktown in 2003, Post Hurricane 
Isabel and 2019.  The +2 ft MLW depicts the SLR scenario.  Rock and sand can be added to the system to 
adapt to rising sea level to ensure resiliency of the overall system.
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Figure 5‐3.  Selected cross‐sectional profiles of survey data taken at Aquia Landing in 2003, Post 
Hurricane Isabel and 2019.  The +2 ft MLW depicts the SLR scenario.  Rock and sand can be added to the 
system to adapt to rising sea level to ensure resiliency of the overall system.
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Figure 5‐4. Selected cross‐sectional profiles of survey data taken at Kingsmill in 2003, pre and post 
Hurricane Isabel and 2019.  The +2 ft MLW depicts the SLR scenario.  Rock and sand can be added to the 
system to adapt to rising sea level to ensure resiliency of the overall system.
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Figure 5‐5. Selected cross‐sectional profiles of survey data taken at Bavon in 2011 and 2019.  The +2 ft 
MLW depicts the SLR scenario.  2011 survey data provided by VHB, Inc.
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6	 Summary	

Many breakwater sites occur around Chesapeake Bay in a variety of settings, installed at 
different times over the past 30 years.  The five sites in this report are just a sample in terms of 
site setting and age. The basic application of rock, sand and plants has taken on significant 
modifications in design and construction over the years, but the basics of creating a stable beach 
for shore protection remains.  Fetch exposure drives design especially as it relates to shore 
protection, the primary reason for breakwater and beach system installations.  Sites with larger 
fetches typically cannot sustain a marsh and require a beach for shore protection.  These living 
shorelines can reduce sediment input as well as provide both subtidal, intertidal, and pore space 
habitats for diverse estuarine fauna and their predators.   

With increasing sea level rise and the ongoing desire to provide shore protection with 
these types of system, it is important to look back on what has been done and how has it 
functioned.  Has the system protected the shoreline and associated upland infrastructure and has 
it provided habitat diversity?  At the five sites that were studied, the systems are functioning 
quite well for their intended purpose, shore protection with enhanced coastal habitats.  

For adaptive management of these sites, increases in breakwater height are recommended 
to deal with the reality of sea level rise.  At each site, shoreline erosion was occurring because of 
the lack of a stable natural marsh or beach feature to buffer the impinging wave climate.  Due to 
their fetch exposures, just adding sand and planting that subgrade is not sustainable and will not 
be sustainable as sea level rises. Therefore, the increasing the rock structure height is required.  
Into the future, should the system be submerged, structures could provide wave attenuation and 
fish function habitat at some level.   From these modeling results, recommendations and 
guidelines will be developed for managers, contractors, and homeowners to adapt existing and 
future living shoreline projects to sea level rise.   
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